štístko lavorera neenee inquiétais liddell

The IDA, founded 30 years ago, gathers and disseminates light-pollution information and solutions. It has played a pivotal role in turning the tide in the light-pollution war. The IDA is winning over key sectors of the nonastronomical public — including government groups, sections of the lighting industry and electric utilities — arguing that good lighting for astronomers equals energy savings and more attractive surroundings for everyone else. Because of the increased sensitivity of the human eye to blue and green wavelengths when viewing low-luminances (the Purkinje effect) in the night sky, different sources produce dramatically different amounts of visible skyglow from the same amount of light sent into the atmosphere. Lastly, you can do your part by learning more about light pollution and by taking steps to reduce extra nighttime lighting in your own town and backyard. In addition to letting you see the stars better, these steps may also save you money on electricity and help reduce the world’s energy usage. Cities and towns that routinely put up ever-brighter lights for no reason other than “that’s what we’ve always done” may think twice about spending the money if they hear just a few voices of opposition. under natural sunlight, starlight, and moonlight, with their associated natural cycles and seasons. All living things have natural biorhythms that work together with these natural sources of light. There weren’t always the artificial sources of light that we now have in the modern world, such as our street lights, lights from vehicles, electronics, billboards, and buildings, and many other sources of artificial human-created lights. While this abundance of artificial light has given us many advantages in our modern world, it is having many negative consequences on ourselves, our environment, and on all other living things. The use of full cutoff fixtures can allow for lower wattage lamps to be used in the fixtures, producing the same or sometimes a better effect, due to being more carefully controlled. In every lighting system, some sky glow also results from light reflected from the ground. This reflection can be reduced, however, by being careful to use only the lowest wattage necessary for the lamp, and setting spacing between lights appropriately.[86] Assuring luminaire setback is greater than 90° from highly reflective surfaces also diminishes reflectance. In the effort to reduce light pollution, researchers have developed a “Unified System of Photometry,” which is a way to measure how much or what kind of street lighting is needed. The Unified System of Photometry allows light fixtures to be designed to reduce energy use while maintaining or improving perceptions of visibility, safety, and security.[101] There was a need to create a new system of light measurement at night because the biological way in which the eye’s rods and cones process light is different in nighttime conditions versus daytime conditions. Using this new system of photometry, results from recent studies have indicated that replacing traditional, yellowish, high-pressure sodium (HPS) lights with “cool” white light sources, such as induction, fluorescent, ceramic metal halide, or LEDs can actually reduce the amount of electric power used for lighting while maintaining or improving visibility in nighttime conditions.[102] Nighttime illumination, once scarce, is now possessed in abundance and unavoidably ubiquitous. As a result, though, an interrelated shift in perception and valuation emerged—a shift that is critical to present discourse. With this abundance and ubiquity, a renewed attention was given to what is hindered by light. Darkness became, as Hasenöhrl notes, a valorized and ‘sought-after luxury’ of our electrified nights (2014 Hasenöhrl, U. (2014). Lighting conflicts from a historical perspective. In J. Meier, U. Hasenöhrl, K. Krause, & M. Pottharst (Eds.), Urban lighting, light pollution, and society (pp. 105–124). New York, NY: Taylor & Francis. [Google Scholar], p. 119). As a result, our taken-for-granted infrastructure of artificial nighttime lighting has been re-noticed, but in a new light. Concerns are increasingly articulated through a sense of loss—a loss of connection to starlight, or an aspect of nature, or the sublime, or a piece of our humanity—brought about by the loss of dark or ‘natural’ nights (e.g. Bogard, 2013 Bogard, P. (2013). The end of night: Searching for natural darkness in an age of artificial light. New York, NY: Back Bay Books. [Google Scholar]). Reducing light pollution implies many things, such as reducing sky glow, reducing glare, reducing light trespass, and reducing clutter. The method for best reducing light pollution, therefore, depends on exactly what the problem is in any given instance. Possible solutions include: The physics of fluorescent lights can’t be changed, but coatings inside the bulbs can be so they produce a warmer, less blue light. LED lights are more efficient than fluorescent lights, but they also produce a fair amount of light in the blue spectrum. Richard Hansler, a light researcher at John Carroll University in Cleveland, notes that ordinary incandescent lights also produce some blue light, although less than most fluorescent lightbulbs. In June 2009, the American Medical Association developed a policy in support of control of light pollution. News about the decision emphasized glare as a public health hazard leading to unsafe driving conditions. Especially in the elderly, glare produces loss of contrast, obscuring night vision.[25] Concerns have also remained regarding the inverse of proliferating nighttime lighting, namely the rapidly declining access to a natural night sky in the developed world. In recent decades attempts to quantify skyglow and its global presence have emerged, however, data is still somewhat sparse. The first attempt to map this phenomenon on a global scale was published by Cinzano et al. (2001 Cinzano, P., Falchi, F., & Elvidge, C. D. (2001). The first world Atlas of the artificial night sky brightness. Monthly Notices of the Royal Astronomical Society, 328, 689–707.10.1046/j.1365-8711.2001.04882.x[Crossref], [Web of Science ®] [Google Scholar]). A more recent study by Gallaway et al. (2010 Gallaway, T., Olsen, R., & Mitchell, D. (2010). The economics of global light pollution. Ecological Economics, 69, 658–665.10.1016/j.ecolecon.2009.10.003[Crossref], [Web of Science ®] [Google Scholar]) built on their findings and concluded that the amount of people living in areas with a ‘polluted night sky’ is extremely high: around 99% in both North America and the European Union.88. Gallaway et al. (2010 Gallaway, T., Olsen, R., & Mitchell, D. (2010). The economics of global light pollution. Ecological Economics, 69, 658–665.10.1016/j.ecolecon.2009.10.003[Crossref], [Web of Science ®] [Google Scholar]) utilize the threshold criteria established by Cinzano et al. (2001 Cinzano, P., Falchi, F., & Elvidge, C. D. (2001). The first world Atlas of the artificial night sky brightness. Monthly Notices of the Royal Astronomical Society, 328, 689–707.10.1046/j.1365-8711.2001.04882.x[Crossref], [Web of Science ®] [Google Scholar]) for considering an area ‘polluted’ by light. These criteria ‘consider the night sky polluted when the artificial brightness of the sky is greater than 10% of the natural sky brightness above 45° of elevation’ (Gallaway et al., 2010 Gallaway, T., Olsen, R., & Mitchell, D. (2010). The economics of global light pollution. Ecological Economics, 69, 658–665.10.1016/j.ecolecon.2009.10.003[Crossref], [Web of Science ®] [Google Scholar], p. 660).View all notes Furthermore, on both continents approximately 70% of the population lives in areas where brightness at night is at least three times natural levels. From a dark rural area, our unaided eyes can normally see up to 3,000 stars; people with strong eyesight can even see close to 7,000 stars. However, in many urban areas today this number is reduced to around 50, or perhaps even less (Mizon, 2012 Mizon, B. (2012). Light pollution: Responses and remedies (2nd ed.). New York, NY: Springer.10.1007/978-1-4614-3822-9[Crossref] [Google Scholar]). Researchers caution that if the current pace of increasing brightness continues, the ‘pristine night sky’ could become ‘extinct’ in the continental United States by 2025 (Fischer, 2011 Fischer, A. (2011). Starry night. Places Journal. Retrieved 22 October, 2014,. from https://placesjournal.org/article/starry-night/[Crossref] [Google Scholar]). Light pollution is the adding-of/added light itself, in analogy to added sound, carbon dioxide, etc. Adverse consequences are multiple; some of them may not be known yet. Scientific definitions thus include the following: el macho TestX Core Celuraid Muscle Testogen Tonus Fortis Testogen Testogen TestX Core Masculin Active eracto

kalwi

Helooo